
Harmonic oscillators in the Nosé-Hoover environment

V. L. Golo,1,* Vl. N. Salnikov,1,† and K. V. Shaitan2,‡

1Department of Mechanics and Mathematics, Moscow University, Moscow 119 899, Russia
2Department of Biology, Moscow University, Moscow 119 899, Russia

(Received 16 February 2004; revised manuscript received 7 May 2004; published 29 October 2004)

We study the dynamics of an ensemble of noninteracting harmonic oscillators in a nonlinear dissipative
environment described by the Nosé-Hoover model, and find the histogram for energy regions of phase space
against visiting time by employing numerical simulation. The results agree with the analysis of the Nosé-
Hoover equations effected with the method of averaging for small values of the dissipative parametera of the
thermostat. We find oscillations at frequencies proportional toÎa /m , m being the characteristic mass of the
particle, about the stationary state corresponding to equilibrium, for sufficiently smalla. In this region ofa the
histogram does not correspond to Gibbs’ canonical distribution. For larger values ofa the motion becomes
irregular. The phenomena could have an important bearing upon simulating molecular dynamics in the Nosé-
Hoover thermostat.
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I. INTRODUCTION

The Nosé-Hoover model[1–3] is widely used in molecu-
lar dynamics for simulating a system’s behavior at constant
temperature. The central idea of the model, which is the in-
troduction of auxiliary dynamic variables to control kinetic
energy, admits of various implementations. In the most
simple and exploited form it amounts to considering a mini-
mal nonlinear extension of the original equations for the sys-
tem. It should be noted that Hamiltonian versions of the
model drew considerable attention[4].

In the present paper we study the Nosé-Hoover model in
the form generally employed in molecular dynamics, that is,
a system constructed from initial Hamiltonian equations, i.e.,
using Newton’s second law, by employing nonlinear dissipa-
tive terms on their right-hand sides, and an additional equa-
tion for the dissipation parameter, or “demon,”g, which is
allowed to vary in time, so that the equations of evolution
read

mirWï = −
]

] rWi

UsrW1,rW2,…,rWNd − g rẆi ,

ġ = aS 2

3kbTN
o
i=1

N
mirWi

.2

2
− 1D . s1d

In this setting the Nosé-Hoover model is a Hamiltonian sys-
tem with dissipation. For sufficiently small values ofa the
dissipative effects can be treated within the framework of
perturbation theory.

Considerable criticism has been leveled at the Nosé-
Hoover approach(see[5] and references therein), because it
runs across difficulties in providing the correct thermody-

namic behavior for simple harmonic systems; it is still gen-
erally accepted that its efficiency improves with an increase
of complexity and dimension of the simulated system[5]. It
should be noted that substantial improvement aimed at com-
patibility with Gibbs’ ensembles has been effected on the
original version of the Nosé-Hoover model(see the review
article [6]). Indeed, one can reproduce Brownian motion by
employing several thermostat variables, or demons, instead
of the singular auxiliaryg (see the comprehensive treatment
of the subject in[6,7]). In this paper we study the initial
version of the Nosé-Hoover model, which, from the point of
view of dynamical theory, corresponds to a nonlinear time-
dependent dissipative environment and, therefore, has a
physical interest of its own.

We focus our attention on ensembles of harmonic oscilla-
tors; the importance of such systems follows from the fact
that among these is the harmonic lattice, familiar in the theo-
ries of solids and molecules. The potential energy of a har-
monic lattice is given by the quadratic form

UsrW1,rW2,…,rWNd = o
i,j=1

N

o
l,k=1

3

li j
lkr i

lr j
k s2d

in which r i
l is thelth coordinate of theith particle. To see the

symmetry properties of the model we may cast Eq.(1) in the
matrix form

mir̈ i + sLrdi + gṙ i = 0

in which L is the matrix of force constantsli j
lk. It can be

transformed by an appropriate orthogonal transformationR
to the diagonal form

Usw1,w2,…,w3Nd = o
i=1

3N

liwi
2. s3d

Assume that allmi are equal,mi =m, and letR be the matrix
of the orthogonal transformation mentioned above, andw a
3N-dimensional vector of coordinates with respect to the
new coordinate system determined byR. Since Rstd=R is
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constant, andg is an invariant of the orthogonal transforma-
tion, we may cast Eq.(1) in the form

Rẅ+ LRw+ gRẇ= 0,

so that the equation acquires the form

ẅ + sRTLRdw + gẇ = 0

in which the matrixRTLR is the diagonal one.
It should be noted that three of the eigenvaluesli are

equal to zero, which corresponds to the conservation of mo-
mentum of the lattice. In what follows, we shall neglect the
modes of zero frequencies, considering only internal degrees
of freedom corresponding to thermodynamical properties of
the system.

Thus, we have transformed the original problem of har-
monic lattice to that for a set of harmonic oscillators, which
do not interact with each other. It is more tractable from an
analytical point of view. At this point it should be noted that
molecular dynamics usually involves nonlinear systems, and
therefore it is of interest to investigate possible nonlinear
extensions of our results. For the moment we may only claim
that, according to the numerical simulation, very small non-
linear terms in Eq.(1) do not lead to any drastic changes, but
the problem needs thorough study, which is to be found else-
where.

At this point it is worthwhile to notice that problems of
molecular dynamics involve dynamical systems of extremely
high dimension, and this circumstance brings about specific
difficulties for numerical simulations. The best approach to
the problem is to use analytical methods in conjunction with
the numerical ones, e.g., for the Nosé-Hoover model, where
systematic investigation of high-dimensional cases is par-
ticularly interesting(see[5]). To this end we use the method
of “windows” worked out for the needs of relaxation dynam-
ics of spin in superfluid3He (see the review article[8]) to
obtain a general picture of the Nosé-Hoover dynamics for an
ensemble of harmonic oscillators. We show that, if the dissi-
pative constanta is small enough, the dynamics is charac-
terized by the presence of oscillations around the stationary
solution corresponding to an equilibrium for which the
phase-space sampling is different from the normal law. In
fact, we find that for sufficiently largea the oscillations dis-
appear, and the motion of the system becomes irregular.

II. STOCHASTIC PROPERTIES OF THE SYSTEM

The numerical analysis of the Nosé-Hoover model given
by Eq.(1), which is a high-dimensional nonlinear dissipative
system, is a serious challenge, and, in fact, it is generally
confined to low-dimensional situations(see[9], in which the
case of two oscillators is considered). In treating high-
dimensional problems the key point is the wise choice of
output variables. In the present case it is dictated by the
physics of the problem, and taking into account the structure
of the Nosé-Hoover model, that is, its being a Hamiltonian
system with dissipation, we employ to that effect the total
energy of the systemE,

E = Ekin + U,

and the dissipative variableg. Directing the output in the
sE-gd plane, we obtain a kind of two-dimensional window on
the phase space of the model, which has dimension 2N+1,
whereN is the number of oscillators. Since we aim at study-
ing situations in whichN is large, the two-dimensional re-
duction is of primary importance. Next, one should look for
the distribution law of the the system in phase space, and one
could expect that it should be either the microcanonical or
the Gibbs one; the first is characterized by its being centered
on a particular value of energyE0, whereas the latter has a
characteristic bell shape. We shall see that the actual situa-
tion is richer(Fig. 1).

It is worthwhile to employ units of physical quantities
corresponding to the scales of molecular dynamics. In our
computer calculations we shall use the unit of mass
<10−23 g, the unit of length 10−8 cm, and the unit of time
2310−13 s, so that the unit of energyE reads

E = 1.253 10−14 erg,

and we may introduce the reduced temperature

TR =
kbT

E ,

which, at room temperatures, turns out to be of the order 1.
To find the distribution law we consider the partition of

the phase space into regions

FIG. 1. Energy regions of phase space against visiting time.
Number of oscillatorsN=1000, dissipative parametera=0.01, tem-
perature parameterTR=3,T0=0.5NTR; all frequenciesvi =1; initial
coordinatesxi and momentapi distributed randomly from −2 to +2;
initial g=0. Averaged distribution, Eq.(15), given by dashed line.
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R1,R2,…,Rk,…,RL s4d

corresponding to the energy intervalsEkøEøEk+1, assumed
to be of equal size, and compile a record of periods of time
t1,t2,… ,tk,… ,tL which the system spends in regions(4); the
total time of simulation reads

t = o
i=1

L

ti .

The frequencies for the system’s visiting the regions are
given by the equation

pk =
tk
t

, k = 1,2,…,L. s5d

It is convenient to use a representation for the set of frequen-
cies by a histogram, that is, rectangles whose widths repre-
sent the energy intervals(4) and whose heights represent the
corresponding frequencies. It is worth noting that the parti-
tion of the phase space into the energy regions(4) can be
effected in a more graphic form with the help of thesE-gd
window on the phase space. In fact, the numerical simulation
gives a picture of the system’s motion, the timestk being
those spent in the bands determined by the constraintsEk
øEøEk+1, as is illustrated in Fig. 2.

To be specific, we consider a set of one-dimensional har-
monic oscillators given by the Hamiltonians

Hi =
pi

2 + m2vi
2xi

2

2m
, i = 1,2,…,N.

The oscillators do not interact with each other, so that the
total Hamiltonian reads

H = H1 + H2 + ¯ + HN.

The choice of the dissipative parametera is important. In
accord with the general prescription of molecular dynamics
[10], one usually takes it small. It is a matter of a certain
interest to see what happens ifa is of intermediate size. We
come to the conclusion that the actual small size ofa is to be
gauged in accord with the smallest of frequencies
v1,v2,… ,vN,

vL = minhv1,v2,…,vNj. s6d

In fact, our numerical calculations, as well as the averaging
method(see Sec. III) indicate that the region of really small
a should comply with the requirement

Va , vL s7d

in which

Va =Îa

m
.

One may state that the characteristic frequencyVa should be
below the lowest edge of the oscillator band.

Therefore, our calculations can be partitioned into two
groups: F1, long time scales for which condition(7) is satis-
fied; F2, intermediate time scales for which(7) is broken and
the characteristic frequencies lie inside or above the oscilla-
tor bandv1,v2,… ,vN.

Let us consider first case F1, which strictly follows the
molecular dynamics prescription[10]. In accord with Eq.(4)
we obtain the histogram given in Fig. 1, describing the prob-
ability distributionr for the system in phase space. It is quite
different from the microcanonical or Gibbs distribution. It is
important that the windowsE-gd provides a means for elu-
cidating the form of the fluctuations around the stationary
state given by the equations

g = 0, E = 2T0, Ekin = T0

for some valueT0 of the temperature parameter[cf. Eq.
(13)]. The circular motion seen in thesE-gd window is char-
acterized by a mean angular velocity given by the lawÎa /m
to within one-thousandth, that is, we obtainVa indicated
above. The fact agrees with the histogram given in Fig. 1
(see Sec. III for the details).

The width of the ring swept over by a trajectory as seen in
the sE-gd window depends on the structure of the oscillator
band. If the scattering of the oscillator frequency is small, for
example, they are all equal, the width is sufficiently pro-
nounced(see Fig. 2). For the case of a harmonic lattice when
the frequencies read

vk
2 =

4C

m
sin22pka

N
s8d

the width is very small(see Fig. 3). The same phenomenon
also takes place for a sufficiently dense random distribution
of the oscillators. For the case of an ideal gas the oscillation
law Îa /m was found in[9] [see Eqs.(5) and (8) of [9]].

The results of the calculation can be cast in the form of a
histogram, and it should be noted that the shape of the his-
togram depends on the amplitude of the oscillations, that is,
the size of deviations in the energyE from the stationary
value 2T0 determined by the temperature parameter of the
model. In the next section we shall find the distribution using
an averaging method fora which satisfies the requirement
Va,vL, and it is worth noting that the numerical results are
in good agreement with those given by the averaging, as is
seen from Fig. 4. The energy distribution that should corre-
spond to Gibbs’ canonical ensemble for the set of harmonic

FIG. 2. Trajectory insE-gd window. RegionsRk indicated by
shaded vertical band. Values of parameters and initial data are the
same as in Fig. 1.
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oscillators at temperatureT is given by the equation

dr = cN
EN−1

s2pkbTdNe−E/kbTdE s9d

and is totally different from Fig. 1. The discrepancy between
the obtained and expected distributions indicates that the
Nosé-Hoover model describes a kind of nonlinear dissipative
system having special properties.

Turn now to case F2. A typical situation is illustrated in
Fig. 5. We see that a trajectory seen in thesE-gd window

sweeps over a region in theE-g plane. The motion is quite
irregular and needs specific study, which is to be done else-
where. The energy distribution illustrated in Fig. 6 strongly
suggests that it is chaotic. It should be noted that in case F2
the averaging method of Sec. III breaks down, for values of
a not small enough. But we cannot claim that the histogram
corresponds to the Gibbs distribution. In fact, its shape
strongly depends on the data, i.e., oscillator frequencies, ini-
tial data, and values ofa. This circumstance could be instru-
mental in the use of the Nosé-Hoover model for molecular
dynamics, for one might obtain helpful distributions by ad-
justing the model’s data.

III. AVERAGED SYSTEM

The simulation of the last section, which was thoroughly
checked by calculating with different algorithms and com-
paring their results, might nonetheless be subject to artifacts
and errors. In this respect, it is important that analytical
means capable of verifying Sec. II have been used and re-
sulted in agreement with the numerical work.

Let us notice that according to the prescription described
in the Introduction[see Eq.(1)] the ensemble ofN harmonic

FIG. 3. Very narrow band swept by a trajectory insE-gd win-
dow. Number of oscillatorsN=1000; dissipative parametera
=10−5; temperature parameterTR=3,T0=0.5NTR; frequenciesvi

given by Eq.(8) with 4C/m=2.25,a=1; initial coordinatesxi and
momentapi distributed randomly from −2 to +2; initialg=0.

FIG. 4. Characteristic frequencyVa below oscillator frequency
band. Values of parameters and initial data are the same as in Fig. 1.
Filled area gives energy distribution against visiting time according
to numerical simulation; dashed line corresponds to Gibbs
distribution.

FIG. 5. Trajectory in windowsE-gd. Characteristic frequency
Va inside oscillator frequency band. Number of oscillatorsN
=1000; dissipative parametera=0.01; temperature parameterTR

=3,T0=0.5NTR; frequenciesvi given by Eq. (8) with 4C/m
=2.25,a=1; initial coordinatesxi and momentapi distributed ran-
domly from −2 to +2.

FIG. 6. Energy regions of phase space against visiting time;
characteristic frequencyVa inside the oscillator band. The data are
the same as in Fig. 5.
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oscillators confined to the Nosé-Hoover thermostat is de-
scribed by the system of equations

ẍi + vi
2xi = −

g

mi
ẋi si = 1,2,…,Nd,

ġ = aS 2

kbTN
o
i=1

N
miẋi

2

2
− 1D s10d

in which all dimensional quantities are in the CGS system of
units. It is important that the dissipative constanta is sug-
gested to be small,a!1, or, to be more precise,Va

!vL , vL being the lowest edge of the oscillator band. In
fact, we shall require that the characteristic frequencies sat-
isfy condition (7). The structure of the oscillator frequency
set deserves special attention. If the number of oscillators is
large, the frequencies may be very dense, so that one may
regard them as a band, as may happen, for example, in the
case of numerical modeling of large molecules. At the same
time, even for large systems there may exist situations in
which the number of different values ofvi is small, even all
of them being equal. Our analysis, based on the averaging
method, depends on condition(7) being satisfied, that is,
small values ofa, usually employed in molecular dynamics
(see[10]). If (7) is broken, the nature of the system’s dynam-
ics changes drastically, and one may expect its becoming
chaotic, as could be expected from Figs. 5 and 6. This phe-
nomenon may be useful for the practical needs of molecular
dynamics; its detailed treatment is to be found elsewhere.

Thus, we may say thatVa should lie below the edge of
the band determined by the oscillators’ frequencies and cor-
respond to a time scale larger than the time scales of the
oscillators. This assumption enables us to choose, as a first
approximation, the nondissipative regime for whicha
;0,g=0, and there is an exact solution given by the
equation

xi = Aicossvit + fid, ẋi = − Aivisinsvit + fid. s11d

The energy of theith oscillator divided by massm reads

ei =
ẋi

2

2
+

vi
2xi

2

2
=

Ai
2vi

2

2
. s12d

The masses of the particles are assumed to be equal,mi =m,
the oscillators being allowed to differ only in their frequen-
cies vi. Equations(11), from the topological point of view,
mean that the ensemble’s motion belongs to an
N-dimensional torus, the whole phase space being foliated by
the tori. We shall consider the system at temperatureT. Since
the parametera is small, we may take into account the non-
linear dissipative terms on the right-hand sides of Eqs.(10),
within the framework of the averaging approach, that is, by
substituting the basic equations(11) into the right-hand sides
of the exact equations,

ėi = −
g

m
SAi

2vi
2

2
−

Ai
2vi

2

2
coss2vit + 2fidD ,

ġ = aS m

2T*
o
i=1

N
Ai

2vi
2

2
− 1D ,

in which

T* =
1

2
NkbT s13d

and we cancel out the oscillating terms. The procedure
means, as was claimed above, that we consider a time scale
larger than the largest period of our oscillators, or, to put it
the other way round, the frequencies of the averaged system
should be lower than the band determined by the oscillators’
frequencies. Thus, we obtain the averaged equations

ėi = −
g

m

Ai
2vi

2

2
,

ġ = aS m

2T*
o
i=1

N
Ai

2vi
2

2
− 1D ,

or

ėi = −
g

m
ei, ġ = aS m

2T*
o
i=1

N

ei − 1D ,

as follows from Eq.(12).
Since the total energy of the system is given by the

equation

E = mo
i=1

N

ei ,

we obtain the following two equations:

Ė = −
g

m
E, ġ =

a

2T*
sE − 2T*d,

which have a stationary solution describing the oscillators at
the temperature parameterT* , given by Eq.(13), or, using
the units of Sec. II,E=2T0,

E = 2T* , g = 0.

Close to the stationary solutions we have the equations for
energy

E = 2T* + Z.

Therefore the equations forZ andg acquire the forms

Ż = −
g

m
Z − 2

g

m
T* , ġ =

a

2T*
Z.

On linearizing the equations indicated above, we obtain

Ż = −
2T*

m
g, ġ =

a

2T*
Z,

and hence the equation forZ
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Z̈ +
a

m
Z = 0, s14d

which has the form of a harmonic oscillator with the
frequency

Îa

m
.

Solutions to Eqs.(10) are illustrated in thesE-gd plane, in
Fig. 7.

We may use Eq.(14) to find the time spent by the system
in the region of the phase space corresponding to the energy
intervalE1,E,E2. In fact, from the periodic motion of the
system, we infer that the visiting frequencyDt / t, in the av-
eraged approximation, reads

Dt

t
= Farcsin

E2 − 2T*

Emax− 2T*
− arcsin

E1 − 2T*

Emax− 2T*
G . s15d

It is convenient to use the density of the visiting events per
energy interval,

lim
E2−E1→0

S 1

E2 − E1

Dt

t
D =

1

2p

d

dE
arcsin

E − 2T*

Emax− 2T*

=
1

2psEmax− 2T*d

3F1 −S E − 2T*

Emax− 2T*
D2G−1/2

.

The cusp form of the dashed line for the averaged distri-
bution in Fig. 1 is in agreement with the singularity atE
=Emax in the above equation.

IV. CONCLUSION

We have studied the dynamics of an ensemble of har-
monic oscillators confined to the Nosé-Hoover thermostat,

the number of oscillatorsN being large, and the dissipative
constanta small. Our analysis indicates that the nonlinear
dynamics of the model has very interesting specific features
even in the case of a simple harmonic system, and in this
respect the characteristic frequency of collective oscillations
Va=Îa /m deserves particular attention. Indeed, if the mass
m of a particle, corresponding to the oscillator, is<10−23 g,
anda,0.1 g/s2, the frequency of the oscillations generated
by the thermostat dynamics should be in the region of 100
GHz, that is, the low-frequency region of molecular vibra-
tions. At the same time it is worth noting that the Nosé-
Hoover model corresponds to a Hamiltonian system confined
to a dissipative environment, that is, it comprises a base
Hamiltonian system, e.g., oscillators, and a dissipative exten-
sion formed by auxiliary variables; in the present case it is
the variableg. A similar system, even though more sophisti-
cated, is the Leggett-Takagi theory of spin dynamics in su-
perfluid phases of helium-3[11,12], in which the equations
describing the spin motion are augmented by an equation for
the order parameter that contains a dissipative term. The situ-
ation is reminiscent of that taking place in the hydrodynami-
cal treatment of viscous phenomena in the GHz region,
where, according to the theory worked out by Mandelstam
and Leontovic(see[13]), the effects of dissipation can be
accommodated by employing an auxiliary dynamical vari-
ablej, which describes certain states of the system, e.g., the
concentration of a chemical reagent. The evolution equations
for j have dissipative character, for they should describe the
system’s coming to equilibrium, although the initial equa-
tions for the system could be of Hamiltonian form. The
Nosé-Hoover model may turn out to be of a similar kind and
thus helpful in studying interesting physical problems.

It is also worth noting that for very large systems, for
example, macromolecules, the lowest edge of the oscillator
band may turn out to be very small, as is suggested by the
dispersion law for a harmonic lattice, given by Eq.(8), which
describes the dispersion of elastic waves within the Born–
von Kármán approximation, i.e., imposing periodic boundary
conditions. The error with respect to the dispersion of the
free lattice is proportional to the ratio of surface sites to the
total number of lattice sites(see[14]). We see that the lowest
edge of the frequency band for largeN is very small, and the
application of the Nosé-Hoover thermostat should require
intermediate values of the dissipative parametera, so that
the characteristic frequencyVa should lie inside the fre-
quency band of the lattice, and the motion might become
chaotic. These phenomena may turn out to be useful for the
needs of molecular dynamics.
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FIG. 7. Oscillations round stationary solution. Numerical simu-
lation corresponds to filled area, averaged equations to dashed line.
The data are the same as in Fig. 1.
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